Artwork

Contenido proporcionado por Zeta Alpha. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Zeta Alpha o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Evaluating Extrapolation Performance of Dense Retrieval: How does DR compare to cross encoders when it comes to generalization?

58:30
 
Compartir
 

Manage episode 355037185 series 3446693
Contenido proporcionado por Zeta Alpha. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Zeta Alpha o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

How much of the training and test sets in TREC or MS Marco overlap? Can we evaluate on different splits of the data to isolate the extrapolation performance?

In this episode of Neural Information Retrieval Talks, Andrew Yates and Sergi Castella i Sapé discuss the paper "Evaluating Extrapolation Performance of Dense Retrieval" byJingtao Zhan, Xiaohui Xie, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma.

📄 Paper: https://arxiv.org/abs/2204.11447

❓ About MS Marco: https://microsoft.github.io/msmarco/

❓About TREC: https://trec.nist.gov/

🪃 Feedback form: https://scastella.typeform.com/to/rg7a5GfJ

Timestamps:

00:00 Introduction

01:08 Evaluation in Information Retrieval, why is it exciting

07:40 Extrapolation Performance in Dense Retrieval

10:30 Learning in High Dimension Always Amounts to Extrapolation

11:40 3 Research questions

16:18 Defining Train-Test label overlap: entity and query intent overlap

21:00 Train-test Overlap in existing benchmarks TREC

23:29 Resampling evaluation methods: constructing distinct train-test sets

25:37 Baselines and results: ColBERT, SPLADE

29:36 Table 6: interpolation vs. extrapolation performance in TREC

33:06 Table 7: interplation vs. extrapolation in MS Marco

35:55 Table 8: Comparing different DR training approaches

40:00 Research Question 1 resolved: cross encoders are more robust than dense retrieval in extrapolation

42:00 Extrapolation and Domain Transfer: BEIR benchmark.

44:46 Figure 2: correlation between extrapolation performance and domain transfer performance

48:35 Broad strokes takeaways from this work

52:30 Is there any intuition behind the results where Dense Retrieval generalizes worse than Cross Encoders?

56:14 Will this have an impact on the IR benchmarking culture?

57:40 Outro

Contact: castella@zeta-alpha.com

  continue reading

21 episodios

Artwork
iconCompartir
 
Manage episode 355037185 series 3446693
Contenido proporcionado por Zeta Alpha. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Zeta Alpha o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

How much of the training and test sets in TREC or MS Marco overlap? Can we evaluate on different splits of the data to isolate the extrapolation performance?

In this episode of Neural Information Retrieval Talks, Andrew Yates and Sergi Castella i Sapé discuss the paper "Evaluating Extrapolation Performance of Dense Retrieval" byJingtao Zhan, Xiaohui Xie, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma.

📄 Paper: https://arxiv.org/abs/2204.11447

❓ About MS Marco: https://microsoft.github.io/msmarco/

❓About TREC: https://trec.nist.gov/

🪃 Feedback form: https://scastella.typeform.com/to/rg7a5GfJ

Timestamps:

00:00 Introduction

01:08 Evaluation in Information Retrieval, why is it exciting

07:40 Extrapolation Performance in Dense Retrieval

10:30 Learning in High Dimension Always Amounts to Extrapolation

11:40 3 Research questions

16:18 Defining Train-Test label overlap: entity and query intent overlap

21:00 Train-test Overlap in existing benchmarks TREC

23:29 Resampling evaluation methods: constructing distinct train-test sets

25:37 Baselines and results: ColBERT, SPLADE

29:36 Table 6: interpolation vs. extrapolation performance in TREC

33:06 Table 7: interplation vs. extrapolation in MS Marco

35:55 Table 8: Comparing different DR training approaches

40:00 Research Question 1 resolved: cross encoders are more robust than dense retrieval in extrapolation

42:00 Extrapolation and Domain Transfer: BEIR benchmark.

44:46 Figure 2: correlation between extrapolation performance and domain transfer performance

48:35 Broad strokes takeaways from this work

52:30 Is there any intuition behind the results where Dense Retrieval generalizes worse than Cross Encoders?

56:14 Will this have an impact on the IR benchmarking culture?

57:40 Outro

Contact: castella@zeta-alpha.com

  continue reading

21 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir