Artwork

Contenido proporcionado por Demetrios Brinkmann. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Demetrios Brinkmann o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

PyTorch's Combined Effort in Large Model Optimization // Michael Gschwind // #274

57:44
 
Compartir
 

Manage episode 452058172 series 3241972
Contenido proporcionado por Demetrios Brinkmann. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Demetrios Brinkmann o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Dr. Michael Gschwind is a Director / Principal Engineer for PyTorch at Meta Platforms. At Meta, he led the rollout of GPU Inference for production services. // MLOps Podcast #274 with Michael Gschwind, Software Engineer, Software Executive at Meta Platforms. // Abstract Explore the role in boosting model performance, on-device AI processing, and collaborations with tech giants like ARM and Apple. Michael shares his journey from gaming console accelerators to AI, emphasizing the power of community and innovation in driving advancements. // Bio Dr. Michael Gschwind is a Director / Principal Engineer for PyTorch at Meta Platforms. At Meta, he led the rollout of GPU Inference for production services. He led the development of MultiRay and Textray, the first deployment of LLMs at a scale exceeding a trillion queries per day shortly after its rollout. He created the strategy and led the implementation of PyTorch donation optimization with Better Transformers and Accelerated Transformers, bringing Flash Attention, PT2 compilation, and ExecuTorch into the mainstream for LLMs and GenAI models. Most recently, he led the enablement of large language models on-device AI with mobile and edge devices. // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links Website: https://en.m.wikipedia.org/wiki/Michael_Gschwind --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Michael on LinkedIn: https://www.linkedin.com/in/michael-gschwind-3704222/?utm_source=share&utm_campaign=share_via&utm_content=profile&utm_medium=ios_app

Timestamps: [00:00] Michael's preferred coffee [00:21] Takeaways [01:59] Please like, share, leave a review, and subscribe to our MLOps channels! [02:10] Gaming to AI Accelerators [11:34] Torch Chat goals [18:53] Pytorch benchmarking and competitiveness [21:28] Optimizing MLOps models [24:52] GPU optimization tips [29:36] Cloud vs On-device AI [38:22] Abstraction across devices [42:29] PyTorch developer experience [45:33] AI and MLOps-related antipatterns [48:33] When to optimize [53:26] Efficient edge AI models [56:57] Wrap up

  continue reading

399 episodios

Artwork
iconCompartir
 
Manage episode 452058172 series 3241972
Contenido proporcionado por Demetrios Brinkmann. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Demetrios Brinkmann o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Dr. Michael Gschwind is a Director / Principal Engineer for PyTorch at Meta Platforms. At Meta, he led the rollout of GPU Inference for production services. // MLOps Podcast #274 with Michael Gschwind, Software Engineer, Software Executive at Meta Platforms. // Abstract Explore the role in boosting model performance, on-device AI processing, and collaborations with tech giants like ARM and Apple. Michael shares his journey from gaming console accelerators to AI, emphasizing the power of community and innovation in driving advancements. // Bio Dr. Michael Gschwind is a Director / Principal Engineer for PyTorch at Meta Platforms. At Meta, he led the rollout of GPU Inference for production services. He led the development of MultiRay and Textray, the first deployment of LLMs at a scale exceeding a trillion queries per day shortly after its rollout. He created the strategy and led the implementation of PyTorch donation optimization with Better Transformers and Accelerated Transformers, bringing Flash Attention, PT2 compilation, and ExecuTorch into the mainstream for LLMs and GenAI models. Most recently, he led the enablement of large language models on-device AI with mobile and edge devices. // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links Website: https://en.m.wikipedia.org/wiki/Michael_Gschwind --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Michael on LinkedIn: https://www.linkedin.com/in/michael-gschwind-3704222/?utm_source=share&utm_campaign=share_via&utm_content=profile&utm_medium=ios_app

Timestamps: [00:00] Michael's preferred coffee [00:21] Takeaways [01:59] Please like, share, leave a review, and subscribe to our MLOps channels! [02:10] Gaming to AI Accelerators [11:34] Torch Chat goals [18:53] Pytorch benchmarking and competitiveness [21:28] Optimizing MLOps models [24:52] GPU optimization tips [29:36] Cloud vs On-device AI [38:22] Abstraction across devices [42:29] PyTorch developer experience [45:33] AI and MLOps-related antipatterns [48:33] When to optimize [53:26] Efficient edge AI models [56:57] Wrap up

  continue reading

399 episodios

Alle afleveringen

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir