Artwork

Contenido proporcionado por Demetrios. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Demetrios o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Efficient Deployment of Models at the Edge // Krishna Sridhar // #284

51:33
 
Compartir
 

Manage episode 461627605 series 3241972
Contenido proporcionado por Demetrios. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Demetrios o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Krishna Sridhar is an experienced engineering leader passionate about building wonderful products powered by machine learning. Efficient Deployment of Models at the Edge // MLOps Podcast #284 with Krishna Sridhar, Vice President of Qualcomm.

Big shout out to Qualcomm for sponsoring this episode! // Abstract Qualcomm® AI Hub helps to optimize, validate, and deploy machine learning models on-device for vision, audio, and speech use cases. With Qualcomm® AI Hub, you can: Convert trained models from frameworks like PyTorch and ONNX for optimized on-device performance on Qualcomm® devices. Profile models on-device to obtain detailed metrics including runtime, load time, and compute unit utilization. Verify numerical correctness by performing on-device inference. Easily deploy models using Qualcomm® AI Engine Direct, TensorFlow Lite, or ONNX Runtime. The Qualcomm® AI Hub Models repository contains a collection of example models that use Qualcomm® AI Hub to optimize, validate, and deploy models on Qualcomm® devices. Qualcomm® AI Hub automatically handles model translation from source framework to device runtime, applying hardware-aware optimizations, and performs physical performance/numerical validation. The system automatically provisions devices in the cloud for on-device profiling and inference. The following image shows the steps taken to analyze a model using Qualcomm® AI Hub. // Bio Krishna Sridhar leads engineering for Qualcomm™ AI Hub, a system used by more than 10,000 AI developers spanning 1,000 companies to run more than 100,000 models on Qualcomm platforms. Prior to joining Qualcomm, he was Co-founder and CEO of Tetra AI which made its easy to efficiently deploy ML models on mobile/edge hardware. Prior to Tetra AI, Krishna helped design Apple's CoreML which was a software system mission critical to running several experiences at Apple including Camera, Photos, Siri, FaceTime, Watch, and many more across all major Apple device operating systems and all hardware and IP blocks. He has a Ph.D. in computer science from the University of Wisconsin-Madison, and a bachelor’s degree in computer science from Birla Institute of Technology and Science, Pilani, India. // MLOps Swag/Merch https://shop.mlops.community/ // Related Links Website: https://www.linkedin.com/in/srikris/ --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Krishna on LinkedIn: https://www.linkedin.com/in/srikris/

  continue reading

401 episodios

Artwork
iconCompartir
 
Manage episode 461627605 series 3241972
Contenido proporcionado por Demetrios. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Demetrios o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Krishna Sridhar is an experienced engineering leader passionate about building wonderful products powered by machine learning. Efficient Deployment of Models at the Edge // MLOps Podcast #284 with Krishna Sridhar, Vice President of Qualcomm.

Big shout out to Qualcomm for sponsoring this episode! // Abstract Qualcomm® AI Hub helps to optimize, validate, and deploy machine learning models on-device for vision, audio, and speech use cases. With Qualcomm® AI Hub, you can: Convert trained models from frameworks like PyTorch and ONNX for optimized on-device performance on Qualcomm® devices. Profile models on-device to obtain detailed metrics including runtime, load time, and compute unit utilization. Verify numerical correctness by performing on-device inference. Easily deploy models using Qualcomm® AI Engine Direct, TensorFlow Lite, or ONNX Runtime. The Qualcomm® AI Hub Models repository contains a collection of example models that use Qualcomm® AI Hub to optimize, validate, and deploy models on Qualcomm® devices. Qualcomm® AI Hub automatically handles model translation from source framework to device runtime, applying hardware-aware optimizations, and performs physical performance/numerical validation. The system automatically provisions devices in the cloud for on-device profiling and inference. The following image shows the steps taken to analyze a model using Qualcomm® AI Hub. // Bio Krishna Sridhar leads engineering for Qualcomm™ AI Hub, a system used by more than 10,000 AI developers spanning 1,000 companies to run more than 100,000 models on Qualcomm platforms. Prior to joining Qualcomm, he was Co-founder and CEO of Tetra AI which made its easy to efficiently deploy ML models on mobile/edge hardware. Prior to Tetra AI, Krishna helped design Apple's CoreML which was a software system mission critical to running several experiences at Apple including Camera, Photos, Siri, FaceTime, Watch, and many more across all major Apple device operating systems and all hardware and IP blocks. He has a Ph.D. in computer science from the University of Wisconsin-Madison, and a bachelor’s degree in computer science from Birla Institute of Technology and Science, Pilani, India. // MLOps Swag/Merch https://shop.mlops.community/ // Related Links Website: https://www.linkedin.com/in/srikris/ --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Krishna on LinkedIn: https://www.linkedin.com/in/srikris/

  continue reading

401 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir