Artwork

Contenido proporcionado por Demetrios. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Demetrios o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Does AgenticRAG Really Work?

1:01:39
 
Compartir
 

Manage episode 523889664 series 3241972
Contenido proporcionado por Demetrios. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Demetrios o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Satish Bhambri is a Sr Data Scientist at Walmart Labs, working on large-scale recommendation systems and conversational AI, including RAG-powered GroceryBot agents, vector-search personalization, and transformer-based ad relevance models.

Join the Community:

https://go.mlops.community/YTJoinIn

Get the newsletter: https://go.mlops.community/YTNewsletter

// Abstract

The MLOps Community Podcast features Satish Bhambri, Senior Data Scientist with the Personalization and Ranking team at Walmart Labs and one of the emerging leaders in applied AI, in its newest episode. Satish has quietly built one of the most diverse and impactful AI portfolios in his field, spanning quantum computing, deep learning, astrophysics, computer vision, NLP, fraud detection, and enterprise-scale recommendation systems. Bhambri's nearly a decade of research across deep learning, astrophysics, quantum computing, NLP, and computer vision culminated in over 10 peer-reviewed publications released in 2025 through IEEE and Springer, and his early papers are indexed by NASA ADS and Harvard SAO, marking the start of his long-term research arc. He also holds a patent for an AI-powered smart grid optimization framework that integrates deep learning, real-time IoT sensing, and adaptive control algorithms to improve grid stability and efficiency, a demonstration of his original, high-impact contributions to intelligent infrastructure.

Bhambri leads personalization and ranking initiatives at Walmart Labs, where his AI systems serve more than (5% of the world’s population) 531 million users every month, roughly based on traffic data. His work with Transformers, Vision-Language Models, RAG and agentic-RAG systems, and GPU-accelerated pipelines has driven significant improvements in scale and performance, including increases in ad engagement, faster compute by and improved recommendation diversity.

Satish is a Distinguished Fellow & Assessor at the Soft Computing Research Society (SCRS), a reviewer for IEEE and Springer, and has served as a judge and program evaluator for several elite platforms. He was invited to the NeurIPS Program Judge Committee, the most prestigious AI conference in the world, and to evaluate innovations for DeepInvent AI, where he reviews high-impact research and commercialization efforts. He has also judged Y Combinator Startup Hackathons, evaluating pitches for an accelerator that produced companies like Airbnb, Stripe, Coinbase, Instacart, and Reddit.

Before Walmart, Satish built supply-chain intelligence systems at BlueYonder that reduced ETA errors and saved retailers millions while also bringing containers to the production pipeline. Earlier, at ASU’s School of Earth & Space Exploration, he collaborated with astrophysicists on galaxy emission simulations, radio burst detection, and dark matter modeling, including work alongside Dr. Lawrence Krauss, Dr. Karen Olsen, and Dr. Adam Beardsley.

On the podcast, Bhambri discusses the evolution of deep learning architectures from RNNs and CNNs to transformers and agentic RAG systems, the design of production-grade AI architectures with examples, and his long-term vision for intelligent systems that bridge research and real-world impact. and the engineering principles behind building production-grade AI at a global scale.

// Related Links

Papers: https://scholar.google.com/citations?user=2cpV5GUAAAAJ&hl=en

Patent: https://search.ipindia.gov.in/DesignApplicationStatus

~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~

Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExplore

Join our Slack community [https://go.mlops.community/slack]

Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)]

Sign up for the next meetup: [https://go.mlops.community/register]

MLOps Swag/Merch: [https://shop.mlops.community/]

Connect with Demetrios on LinkedIn: /dpbrinkm

  continue reading

491 episodios

Artwork

Does AgenticRAG Really Work?

MLOps.community

57 subscribers

published

iconCompartir
 
Manage episode 523889664 series 3241972
Contenido proporcionado por Demetrios. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Demetrios o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Satish Bhambri is a Sr Data Scientist at Walmart Labs, working on large-scale recommendation systems and conversational AI, including RAG-powered GroceryBot agents, vector-search personalization, and transformer-based ad relevance models.

Join the Community:

https://go.mlops.community/YTJoinIn

Get the newsletter: https://go.mlops.community/YTNewsletter

// Abstract

The MLOps Community Podcast features Satish Bhambri, Senior Data Scientist with the Personalization and Ranking team at Walmart Labs and one of the emerging leaders in applied AI, in its newest episode. Satish has quietly built one of the most diverse and impactful AI portfolios in his field, spanning quantum computing, deep learning, astrophysics, computer vision, NLP, fraud detection, and enterprise-scale recommendation systems. Bhambri's nearly a decade of research across deep learning, astrophysics, quantum computing, NLP, and computer vision culminated in over 10 peer-reviewed publications released in 2025 through IEEE and Springer, and his early papers are indexed by NASA ADS and Harvard SAO, marking the start of his long-term research arc. He also holds a patent for an AI-powered smart grid optimization framework that integrates deep learning, real-time IoT sensing, and adaptive control algorithms to improve grid stability and efficiency, a demonstration of his original, high-impact contributions to intelligent infrastructure.

Bhambri leads personalization and ranking initiatives at Walmart Labs, where his AI systems serve more than (5% of the world’s population) 531 million users every month, roughly based on traffic data. His work with Transformers, Vision-Language Models, RAG and agentic-RAG systems, and GPU-accelerated pipelines has driven significant improvements in scale and performance, including increases in ad engagement, faster compute by and improved recommendation diversity.

Satish is a Distinguished Fellow & Assessor at the Soft Computing Research Society (SCRS), a reviewer for IEEE and Springer, and has served as a judge and program evaluator for several elite platforms. He was invited to the NeurIPS Program Judge Committee, the most prestigious AI conference in the world, and to evaluate innovations for DeepInvent AI, where he reviews high-impact research and commercialization efforts. He has also judged Y Combinator Startup Hackathons, evaluating pitches for an accelerator that produced companies like Airbnb, Stripe, Coinbase, Instacart, and Reddit.

Before Walmart, Satish built supply-chain intelligence systems at BlueYonder that reduced ETA errors and saved retailers millions while also bringing containers to the production pipeline. Earlier, at ASU’s School of Earth & Space Exploration, he collaborated with astrophysicists on galaxy emission simulations, radio burst detection, and dark matter modeling, including work alongside Dr. Lawrence Krauss, Dr. Karen Olsen, and Dr. Adam Beardsley.

On the podcast, Bhambri discusses the evolution of deep learning architectures from RNNs and CNNs to transformers and agentic RAG systems, the design of production-grade AI architectures with examples, and his long-term vision for intelligent systems that bridge research and real-world impact. and the engineering principles behind building production-grade AI at a global scale.

// Related Links

Papers: https://scholar.google.com/citations?user=2cpV5GUAAAAJ&hl=en

Patent: https://search.ipindia.gov.in/DesignApplicationStatus

~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~

Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExplore

Join our Slack community [https://go.mlops.community/slack]

Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)]

Sign up for the next meetup: [https://go.mlops.community/register]

MLOps Swag/Merch: [https://shop.mlops.community/]

Connect with Demetrios on LinkedIn: /dpbrinkm

  continue reading

491 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir