Artwork

Contenido proporcionado por Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

The Lottery Ticket Hypothesis

19:45
 
Compartir
 

Manage episode 254315967 series 74115
Contenido proporcionado por Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Recent research into neural networks reveals that sometimes, not all parts of the neural net are equally responsible for the performance of the network overall. Instead, it seems like (in some neural nets, at least) there are smaller subnetworks present where most of the predictive power resides. The fascinating thing is that, for some of these subnetworks (so-called “winning lottery tickets”), it’s not the training process that makes them good at their classification or regression tasks: they just happened to be initialized in a way that was very effective. This changes the way we think about what training might be doing, in a pretty fundamental way. Sometimes, instead of crafting a good fit from wholecloth, training might be finding the parts of the network that always had predictive power to begin with, and isolating and strengthening them. This research is pretty recent, having only come to prominence in the last year, but nonetheless challenges our notions about what it means to train a machine learning model.
  continue reading

293 episodios

Artwork

The Lottery Ticket Hypothesis

Linear Digressions

3,115 subscribers

published

iconCompartir
 
Manage episode 254315967 series 74115
Contenido proporcionado por Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Recent research into neural networks reveals that sometimes, not all parts of the neural net are equally responsible for the performance of the network overall. Instead, it seems like (in some neural nets, at least) there are smaller subnetworks present where most of the predictive power resides. The fascinating thing is that, for some of these subnetworks (so-called “winning lottery tickets”), it’s not the training process that makes them good at their classification or regression tasks: they just happened to be initialized in a way that was very effective. This changes the way we think about what training might be doing, in a pretty fundamental way. Sometimes, instead of crafting a good fit from wholecloth, training might be finding the parts of the network that always had predictive power to begin with, and isolating and strengthening them. This research is pretty recent, having only come to prominence in the last year, but nonetheless challenges our notions about what it means to train a machine learning model.
  continue reading

293 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir