Artwork

Contenido proporcionado por IVANCAST PODCAST. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente IVANCAST PODCAST o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Peering Into the Black Box: The Rise of Representation Engineering

37:27
 
Compartir
 

Manage episode 448992995 series 3351512
Contenido proporcionado por IVANCAST PODCAST. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente IVANCAST PODCAST o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Join us in SHIFTERLABS’ latest experimental podcast series powered by Notebook LM, where we bridge research and conversation to illuminate groundbreaking ideas in AI. In this episode, we dive into “Representation Engineering: A Top-Down Approach to AI Transparency,” an insightful paper from the Center for AI Safety, Carnegie Mellon University, Stanford, and other leading institutions. This research redefines how we view transparency in deep learning by shifting the focus from neurons and circuits to high-level representations.

Discover how Representation Engineering (RepE) introduces new methods for reading and controlling cognitive processes in AI models, offering innovative solutions to challenges like honesty, hallucination detection, and fairness. We explore its applications across essential safety domains, including model control and ethical behavior. Tune in to learn how these advances could shape a future of AI that is more transparent, accountable, and aligned with human values.

This series is part of SHIFTERLABS’ ongoing commitment to pushing the boundaries of educational technology and fostering discussions at the intersection of research, technology, and responsible innovation.

  continue reading

100 episodios

Artwork
iconCompartir
 
Manage episode 448992995 series 3351512
Contenido proporcionado por IVANCAST PODCAST. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente IVANCAST PODCAST o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Join us in SHIFTERLABS’ latest experimental podcast series powered by Notebook LM, where we bridge research and conversation to illuminate groundbreaking ideas in AI. In this episode, we dive into “Representation Engineering: A Top-Down Approach to AI Transparency,” an insightful paper from the Center for AI Safety, Carnegie Mellon University, Stanford, and other leading institutions. This research redefines how we view transparency in deep learning by shifting the focus from neurons and circuits to high-level representations.

Discover how Representation Engineering (RepE) introduces new methods for reading and controlling cognitive processes in AI models, offering innovative solutions to challenges like honesty, hallucination detection, and fairness. We explore its applications across essential safety domains, including model control and ethical behavior. Tune in to learn how these advances could shape a future of AI that is more transparent, accountable, and aligned with human values.

This series is part of SHIFTERLABS’ ongoing commitment to pushing the boundaries of educational technology and fostering discussions at the intersection of research, technology, and responsible innovation.

  continue reading

100 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir