Artwork

Contenido proporcionado por First Principles and Christian Keil. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente First Principles and Christian Keil o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

#3: Extropic - Why Thermodynamic Computing is the Future of AI (PUBLIC DEBUT)

1:12:59
 
Compartir
 

Manage episode 405937841 series 3554927
Contenido proporcionado por First Principles and Christian Keil. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente First Principles and Christian Keil o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Episode 3: Extropic is building a new kind of computer – not classical bits, nor quantum qubits, but a secret, more complex third thing. They call it a Thermodynamic Computer, and it might be many orders of magnitude more powerful than even the most powerful supercomputers today.

Check out their “litepaper” to learn more: https://www.extropic.ai/future.

======

(00:00) - Intro

(00:41) - Guillaume's Background

(02:40) - Trevor's Background

(04:02) - What is Extropic Building? High-Level Explanation

(07:07) - Frustrations with Quantum Computing and Noise

(10:08) - Scaling Digital Computers and Thermal Noise Challenges

(13:20) - How Digital Computers Run Sampling Algorithms Inefficiently

(17:27) - Limitations of Gaussian Distributions in ML

(20:12) - Why GPUs are Good at Deep Learning but Not Sampling

(23:05) - Extropic's Approach: Harnessing Noise with Thermodynamic Computers

(28:37) - Bounding the Noise: Not Too Noisy, Not Too Pristine

(31:10) - How Thermodynamic Computers Work: Inputs, Parameters, Outputs

(37:14) - No Quantum Coherence in Thermodynamic Computers

(41:37) - Gaining Confidence in the Idea Over Time

(44:49) - Using Superconductors and Scaling to Silicon

(47:53) - Thermodynamic Computing vs Neuromorphic Computing

(50:51) - Disrupting Computing and AI from First Principles

(52:52) - Early Applications in Low Data, Probabilistic Domains

(54:49) - Vast Potential for New Devices and Algorithms in AI's Early Days

(57:22) - Building the Next S-Curve to Extend Moore's Law for AI

(59:34) - The Meaning and Purpose Behind Extropic's Mission

(01:04:54) - Call for Talented Builders to Join Extropic

(01:09:34) - Putting Ideas Out There and Creating Value for the Universe

(01:11:35) - Conclusion and Wrap-Up

======

Links:

First Principles:

======

Production and marketing by The Deep View (https://thedeepview.co). For inquiries about sponsoring the podcast, email team@firstprinciples.fm

======

Checkout the video version here → http://tinyurl.com/4fh497n9

🔔 Follow to stay updated with new uploads

  continue reading

20 episodios

Artwork
iconCompartir
 
Manage episode 405937841 series 3554927
Contenido proporcionado por First Principles and Christian Keil. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente First Principles and Christian Keil o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Episode 3: Extropic is building a new kind of computer – not classical bits, nor quantum qubits, but a secret, more complex third thing. They call it a Thermodynamic Computer, and it might be many orders of magnitude more powerful than even the most powerful supercomputers today.

Check out their “litepaper” to learn more: https://www.extropic.ai/future.

======

(00:00) - Intro

(00:41) - Guillaume's Background

(02:40) - Trevor's Background

(04:02) - What is Extropic Building? High-Level Explanation

(07:07) - Frustrations with Quantum Computing and Noise

(10:08) - Scaling Digital Computers and Thermal Noise Challenges

(13:20) - How Digital Computers Run Sampling Algorithms Inefficiently

(17:27) - Limitations of Gaussian Distributions in ML

(20:12) - Why GPUs are Good at Deep Learning but Not Sampling

(23:05) - Extropic's Approach: Harnessing Noise with Thermodynamic Computers

(28:37) - Bounding the Noise: Not Too Noisy, Not Too Pristine

(31:10) - How Thermodynamic Computers Work: Inputs, Parameters, Outputs

(37:14) - No Quantum Coherence in Thermodynamic Computers

(41:37) - Gaining Confidence in the Idea Over Time

(44:49) - Using Superconductors and Scaling to Silicon

(47:53) - Thermodynamic Computing vs Neuromorphic Computing

(50:51) - Disrupting Computing and AI from First Principles

(52:52) - Early Applications in Low Data, Probabilistic Domains

(54:49) - Vast Potential for New Devices and Algorithms in AI's Early Days

(57:22) - Building the Next S-Curve to Extend Moore's Law for AI

(59:34) - The Meaning and Purpose Behind Extropic's Mission

(01:04:54) - Call for Talented Builders to Join Extropic

(01:09:34) - Putting Ideas Out There and Creating Value for the Universe

(01:11:35) - Conclusion and Wrap-Up

======

Links:

First Principles:

======

Production and marketing by The Deep View (https://thedeepview.co). For inquiries about sponsoring the podcast, email team@firstprinciples.fm

======

Checkout the video version here → http://tinyurl.com/4fh497n9

🔔 Follow to stay updated with new uploads

  continue reading

20 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir