Artwork

Contenido proporcionado por HackerNoon. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente HackerNoon o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Decoding Transformers' Superiority over RNNs in NLP Tasks

9:38
 
Compartir
 

Manage episode 429693621 series 3474670
Contenido proporcionado por HackerNoon. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente HackerNoon o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/decoding-transformers-superiority-over-rnns-in-nlp-tasks.
Explore the intriguing journey from Recurrent Neural Networks (RNNs) to Transformers in the world of Natural Language Processing in our latest piece: 'The Trans
Check more stories related to data-science at: https://hackernoon.com/c/data-science. You can also check exclusive content about #nlp, #transformers, #llms, #natural-language-processing, #large-language-models, #rnn, #machine-learning, #neural-networks, and more.
This story was written by: @artemborin. Learn more about this writer by checking @artemborin's about page, and for more stories, please visit hackernoon.com.
Despite Recurrent Neural Networks (RNNs) designed to mirror certain aspects of human cognition, they've been surpassed by Transformers in Natural Language Processing tasks. The primary reasons include RNNs' issues with the vanishing gradient problem, difficulty in capturing long-range dependencies, and training inefficiencies. The hypothesis that larger RNNs could mitigate these issues falls short in practice due to computational inefficiencies and memory constraints. On the other hand, Transformers leverage their parallel processing ability and self-attention mechanism to efficiently handle sequences and train larger models. Thus, the evolution of AI architectures is driven not only by biological plausibility but also by practical considerations such as computational efficiency and scalability.

  continue reading

150 episodios

Artwork
iconCompartir
 
Manage episode 429693621 series 3474670
Contenido proporcionado por HackerNoon. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente HackerNoon o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/decoding-transformers-superiority-over-rnns-in-nlp-tasks.
Explore the intriguing journey from Recurrent Neural Networks (RNNs) to Transformers in the world of Natural Language Processing in our latest piece: 'The Trans
Check more stories related to data-science at: https://hackernoon.com/c/data-science. You can also check exclusive content about #nlp, #transformers, #llms, #natural-language-processing, #large-language-models, #rnn, #machine-learning, #neural-networks, and more.
This story was written by: @artemborin. Learn more about this writer by checking @artemborin's about page, and for more stories, please visit hackernoon.com.
Despite Recurrent Neural Networks (RNNs) designed to mirror certain aspects of human cognition, they've been surpassed by Transformers in Natural Language Processing tasks. The primary reasons include RNNs' issues with the vanishing gradient problem, difficulty in capturing long-range dependencies, and training inefficiencies. The hypothesis that larger RNNs could mitigate these issues falls short in practice due to computational inefficiencies and memory constraints. On the other hand, Transformers leverage their parallel processing ability and self-attention mechanism to efficiently handle sequences and train larger models. Thus, the evolution of AI architectures is driven not only by biological plausibility but also by practical considerations such as computational efficiency and scalability.

  continue reading

150 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir