Artwork

Contenido proporcionado por Data on Kubernetes Community. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Data on Kubernetes Community o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Dok Talks #151 - Analytics with Apache Superset and ClickHouse // Vijay Anand Ramakrishnan

33:00
 
Compartir
 

Manage episode 342009147 series 2865115
Contenido proporcionado por Data on Kubernetes Community. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Data on Kubernetes Community o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

https://go.dok.community/slack
https://dok.community

With:
Vijay Anand Ramakrishnan - Database Administrator, ChistaDATA
Bart Farrell - Head of Community, Data on Kubernetes Community

ABSTRACT OF THE TALK

This talk concerns performing analytical tasks with Apache Superset with ClickHouse as the data backend. ClickHouse is a super fast database for analytical tasks, and Apache Superset is an Apache Software foundation project meant for data visualization and exploration. Performing analytical tasks using this combo is super fast since both the software are designed to be scalable and capable of handling data of petabyte scale.

BIO

Vijay Anand is based out of Chennai (India), working as a Database Administrator in ChistaDATA. He has extensive experience in ClickHouse, Python and has contributed as a technical lead in multiple organizations building ClickHouse based solutions. His areas of interest include database design, building software solutions using open source technologies. He is the author of a book on ClickHouse titled "Up and Running with ClickHouse".

KEY TAKE-AWAYS

Real time analytics, Data exploration and Visualization

  continue reading

243 episodios

Artwork
iconCompartir
 
Manage episode 342009147 series 2865115
Contenido proporcionado por Data on Kubernetes Community. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Data on Kubernetes Community o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

https://go.dok.community/slack
https://dok.community

With:
Vijay Anand Ramakrishnan - Database Administrator, ChistaDATA
Bart Farrell - Head of Community, Data on Kubernetes Community

ABSTRACT OF THE TALK

This talk concerns performing analytical tasks with Apache Superset with ClickHouse as the data backend. ClickHouse is a super fast database for analytical tasks, and Apache Superset is an Apache Software foundation project meant for data visualization and exploration. Performing analytical tasks using this combo is super fast since both the software are designed to be scalable and capable of handling data of petabyte scale.

BIO

Vijay Anand is based out of Chennai (India), working as a Database Administrator in ChistaDATA. He has extensive experience in ClickHouse, Python and has contributed as a technical lead in multiple organizations building ClickHouse based solutions. His areas of interest include database design, building software solutions using open source technologies. He is the author of a book on ClickHouse titled "Up and Running with ClickHouse".

KEY TAKE-AWAYS

Real time analytics, Data exploration and Visualization

  continue reading

243 episodios

すべてのエピソード

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir