Artwork

Contenido proporcionado por CCC media team. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente CCC media team o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Privatsphäreschonende Gesundheitsdatenverarbeitung (DS2024)

41:57
 
Compartir
 

Manage episode 441255449 series 2475293
Contenido proporcionado por CCC media team. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente CCC media team o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Kann man mit Gesundheitsdaten forschen, ohne die Privatsphäre der ganzen Bevölkerung zu verletzen? Der europäische Gesundheitsdatenraum steht vor der Tür und es sieht zur Zeit nicht danach aus, dass wir mit dessen Umsetzung zufrieden sein können. Gesundheitsdaten aller europäischen Versicherten werden zentral gesammelt und nicht nur für die individuelle medizinische Versorgung gevorratsdatenspeichert, sondern auch für die Wissenschaft. Dabei ist hier explizit nicht nur akademische, sondern auch privatwirtschaftliche Wissenschaft gemeint. Das heißt, nicht nur Universitäten werden auf die Daten zugreifen können, sondern zum Beispiel auch die Pharmaindustrie und die ganz Großen wie Apple oder Google. Unter dem Vorwand der Verbesserung des Nutzungserlebnisses von proprietären Gesundheits-Apps (vorauseilende Mutmaßung der Speaker) werden die persönlichsten aller Daten in Hände gegeben, in denen sie wirklich nichts zu suchen haben. Ist damit alles verloren? Wir sagen nein! In diesem Vortrag präsentieren wir, wie man mit Hilfe von probabilistischen Datenstrukturen personenbezogene Daten verarbeiten kann, ohne die Privatsphäre der jeweiligen Personen zu beeinträchtigen. Dazu zeigen wir die Ergebnisse einer Fallstudie mit zufallsgenerierten Gesundheitsdaten. Wir möchten mit dem Vortrag deutlich machen, dass es durchaus möglich ist, personenbezogene Daten unter gewissen Voraussetzungen in fremde Hände geben zu können. Licensed to the public under https://creativecommons.org/licenses/by/4.0/de/ about this event: https://talks.datenspuren.de/ds24/talk/NGTE3G/
  continue reading

1776 episodios

Artwork
iconCompartir
 
Manage episode 441255449 series 2475293
Contenido proporcionado por CCC media team. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente CCC media team o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Kann man mit Gesundheitsdaten forschen, ohne die Privatsphäre der ganzen Bevölkerung zu verletzen? Der europäische Gesundheitsdatenraum steht vor der Tür und es sieht zur Zeit nicht danach aus, dass wir mit dessen Umsetzung zufrieden sein können. Gesundheitsdaten aller europäischen Versicherten werden zentral gesammelt und nicht nur für die individuelle medizinische Versorgung gevorratsdatenspeichert, sondern auch für die Wissenschaft. Dabei ist hier explizit nicht nur akademische, sondern auch privatwirtschaftliche Wissenschaft gemeint. Das heißt, nicht nur Universitäten werden auf die Daten zugreifen können, sondern zum Beispiel auch die Pharmaindustrie und die ganz Großen wie Apple oder Google. Unter dem Vorwand der Verbesserung des Nutzungserlebnisses von proprietären Gesundheits-Apps (vorauseilende Mutmaßung der Speaker) werden die persönlichsten aller Daten in Hände gegeben, in denen sie wirklich nichts zu suchen haben. Ist damit alles verloren? Wir sagen nein! In diesem Vortrag präsentieren wir, wie man mit Hilfe von probabilistischen Datenstrukturen personenbezogene Daten verarbeiten kann, ohne die Privatsphäre der jeweiligen Personen zu beeinträchtigen. Dazu zeigen wir die Ergebnisse einer Fallstudie mit zufallsgenerierten Gesundheitsdaten. Wir möchten mit dem Vortrag deutlich machen, dass es durchaus möglich ist, personenbezogene Daten unter gewissen Voraussetzungen in fremde Hände geben zu können. Licensed to the public under https://creativecommons.org/licenses/by/4.0/de/ about this event: https://talks.datenspuren.de/ds24/talk/NGTE3G/
  continue reading

1776 episodios

Alle episoder

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida