Artwork

Contenido proporcionado por The Data Flowcast. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The Data Flowcast o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Building Resilient Data Systems for Modern Enterprises at Astrafy with Andrea Bombino

28:29
 
Compartir
 

Manage episode 448897519 series 2948506
Contenido proporcionado por The Data Flowcast. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The Data Flowcast o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Efficient data orchestration is the backbone of modern analytics and AI-driven workflows. Without the right tools, even the best data can fall short of its potential. In this episode, Andrea Bombino, Co-Founder and Head of Analytics Engineering at Astrafy, shares insights into his team’s approach to optimizing data transformation and orchestration using tools like datasets and Pub/Sub to drive real-time processing. Andrea explains how they leverage Apache Airflow and Google Cloud to power dynamic data workflows.

Key Takeaways:

(01:55) Astrafy helps companies manage data using Google Cloud.

(04:36) Airflow is central to Astrafy’s data engineering efforts.

(07:17) Datasets and Pub/Sub are used for real-time workflows.

(09:59) Pub/Sub links multiple Airflow environments.

(12:40) Datasets eliminate the need for constant monitoring.

(15:22) Airflow updates have improved large-scale data operations.

(18:03) New Airflow API features make dataset updates easier.

(20:45) Real-time orchestration speeds up data processing for clients.

(23:26) Pub/Sub enhances flexibility across cloud environments.

(26:08) Future Airflow features will offer more control over data workflows.

Resources Mentioned:

Andrea Bombino -

https://www.linkedin.com/in/andrea-bombino/

Astrafy -

https://www.linkedin.com/company/astrafy/

Apache Airflow -

https://airflow.apache.org/

Google Cloud -

https://cloud.google.com/

dbt -

https://www.getdbt.com/

Apache Airflow Survey -

https://astronomer.typeform.com/airflowsurvey24

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

39 episodios

Artwork
iconCompartir
 
Manage episode 448897519 series 2948506
Contenido proporcionado por The Data Flowcast. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The Data Flowcast o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Efficient data orchestration is the backbone of modern analytics and AI-driven workflows. Without the right tools, even the best data can fall short of its potential. In this episode, Andrea Bombino, Co-Founder and Head of Analytics Engineering at Astrafy, shares insights into his team’s approach to optimizing data transformation and orchestration using tools like datasets and Pub/Sub to drive real-time processing. Andrea explains how they leverage Apache Airflow and Google Cloud to power dynamic data workflows.

Key Takeaways:

(01:55) Astrafy helps companies manage data using Google Cloud.

(04:36) Airflow is central to Astrafy’s data engineering efforts.

(07:17) Datasets and Pub/Sub are used for real-time workflows.

(09:59) Pub/Sub links multiple Airflow environments.

(12:40) Datasets eliminate the need for constant monitoring.

(15:22) Airflow updates have improved large-scale data operations.

(18:03) New Airflow API features make dataset updates easier.

(20:45) Real-time orchestration speeds up data processing for clients.

(23:26) Pub/Sub enhances flexibility across cloud environments.

(26:08) Future Airflow features will offer more control over data workflows.

Resources Mentioned:

Andrea Bombino -

https://www.linkedin.com/in/andrea-bombino/

Astrafy -

https://www.linkedin.com/company/astrafy/

Apache Airflow -

https://airflow.apache.org/

Google Cloud -

https://cloud.google.com/

dbt -

https://www.getdbt.com/

Apache Airflow Survey -

https://astronomer.typeform.com/airflowsurvey24

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

39 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir