Artwork

Contenido proporcionado por Demetrios Brinkmann. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Demetrios Brinkmann o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

MLSecOps is Fundamental to Robust AISPM // Sean Morgan // #257

42:35
 
Compartir
 

Manage episode 437151309 series 3241972
Contenido proporcionado por Demetrios Brinkmann. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Demetrios Brinkmann o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Sean Morgan is an active open-source contributor and maintainer and is the special interest group lead for TensorFlow Addons. Learn more about the platform for end-to-end AI Security at https://protectai.com/. MLSecOps is Fundamental to Robust AI Security Posture Management (AISPM) // MLOps Podcast #257 with Sean Morgan, Chief Architect at Protect AI. // Abstract MLSecOps, which is the practice of integrating security practices into the AIML lifecycle (think infusing MLOps with DevSecOps practices), is a critical part of any team’s AI Security Posture Management. In this talk, we’ll discuss how to threat model realistic AIML security risks, how you can measure your organization’s AI Security Posture, and most importantly how you can improve that security posture through the use of MLSecOps. // Bio Sean Morgan is the Chief Architect at Protect AI. In prior roles he's led production AIML deployments in the semiconductor industry, evaluated adversarial machine learning defenses for DARPA research programs, and most recently scaled customers on interactive machine learning solutions at AWS. In his free time, Sean is an active open-source contributor and maintainer, and is the special interest group lead for TensorFlow Addons. // MLOps Jobs board https://mlops.pallet.xyz/jobs // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links Sean's GitHub: https://github.com/seanpmorgan MLSecOps Community: https://community.mlsecops.com/ --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Sean on LinkedIn: https://www.linkedin.com/in/seanmorgan/ Timestamps: [00:00] Sean's preferred coffee [00:10] Takeaways [01:39] Register for the Data Engineering for AI/ML Conference now! [02:21] KubeCon Paris: Emphasis on security and AI [05:00] Concern about malicious data during training process [09:29] Model builders, security, pulling foundational models, nuances [12:13] Hugging Face research on security issues [15:00] Inference servers exposed; potential for attack [19:45] Balancing ML and security processes for ease [23:23] Model artifact security in enterprise machine learning [25:04] Scanning models and datasets for vulnerabilities [29:23] Ray's user interface vulnerabilities lead to attacks [32:07] ML Flow vulnerabilities present significant server risks [36:04] Data ops essential for machine learning security [37:32] Prioritized security in model and data deployment [40:46] Automated scanning tool for improved antivirus protection [42:00] Wrap up

  continue reading

396 episodios

Artwork
iconCompartir
 
Manage episode 437151309 series 3241972
Contenido proporcionado por Demetrios Brinkmann. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Demetrios Brinkmann o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Sean Morgan is an active open-source contributor and maintainer and is the special interest group lead for TensorFlow Addons. Learn more about the platform for end-to-end AI Security at https://protectai.com/. MLSecOps is Fundamental to Robust AI Security Posture Management (AISPM) // MLOps Podcast #257 with Sean Morgan, Chief Architect at Protect AI. // Abstract MLSecOps, which is the practice of integrating security practices into the AIML lifecycle (think infusing MLOps with DevSecOps practices), is a critical part of any team’s AI Security Posture Management. In this talk, we’ll discuss how to threat model realistic AIML security risks, how you can measure your organization’s AI Security Posture, and most importantly how you can improve that security posture through the use of MLSecOps. // Bio Sean Morgan is the Chief Architect at Protect AI. In prior roles he's led production AIML deployments in the semiconductor industry, evaluated adversarial machine learning defenses for DARPA research programs, and most recently scaled customers on interactive machine learning solutions at AWS. In his free time, Sean is an active open-source contributor and maintainer, and is the special interest group lead for TensorFlow Addons. // MLOps Jobs board https://mlops.pallet.xyz/jobs // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links Sean's GitHub: https://github.com/seanpmorgan MLSecOps Community: https://community.mlsecops.com/ --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Sean on LinkedIn: https://www.linkedin.com/in/seanmorgan/ Timestamps: [00:00] Sean's preferred coffee [00:10] Takeaways [01:39] Register for the Data Engineering for AI/ML Conference now! [02:21] KubeCon Paris: Emphasis on security and AI [05:00] Concern about malicious data during training process [09:29] Model builders, security, pulling foundational models, nuances [12:13] Hugging Face research on security issues [15:00] Inference servers exposed; potential for attack [19:45] Balancing ML and security processes for ease [23:23] Model artifact security in enterprise machine learning [25:04] Scanning models and datasets for vulnerabilities [29:23] Ray's user interface vulnerabilities lead to attacks [32:07] ML Flow vulnerabilities present significant server risks [36:04] Data ops essential for machine learning security [37:32] Prioritized security in model and data deployment [40:46] Automated scanning tool for improved antivirus protection [42:00] Wrap up

  continue reading

396 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir