Player FM - Internet Radio Done Right
Checked 19h ago
Agregado hace cuatro años
Contenido proporcionado por Choses à Savoir. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Choses à Savoir o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !
¡Desconecta con la aplicación Player FM !
Podcasts que vale la pena escuchar
PATROCINADO
At the dawn of the social media era, Belle Gibson became a pioneering wellness influencer - telling the world how she beat cancer with an alternative diet. Her bestselling cookbook and online app provided her success, respect, and a connection to the cancer-battling influencer she admired the most. But a curious journalist with a sick wife began asking questions that even those closest to Belle began to wonder. Was the online star faking her cancer and fooling the world? Kaitlyn Dever stars in the Netflix hit series Apple Cider Vinegar . Inspired by true events, the dramatized story follows Belle’s journey from self-styled wellness thought leader to disgraced con artist. It also explores themes of hope and acceptance - and how far we’ll go to maintain it. In this episode of You Can't Make This Up, host Rebecca Lavoie interviews executive producer Samantha Strauss. SPOILER ALERT! If you haven't watched Apple Cider Vinegar yet, make sure to add it to your watch-list before listening on. Listen to more from Netflix Podcasts .…
Choses à Savoir SCIENCES
Marcar todo como (no) reproducido ...
Manage series 2909011
Contenido proporcionado por Choses à Savoir. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Choses à Savoir o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Développez facilement votre culture scientifique grâce à un podcast quotidien !
…
continue reading
Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
2275 episodios
Marcar todo como (no) reproducido ...
Manage series 2909011
Contenido proporcionado por Choses à Savoir. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Choses à Savoir o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Développez facilement votre culture scientifique grâce à un podcast quotidien !
…
continue reading
Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
2275 episodios
All episodes
×Les horloges atomiques sont les instruments de mesure du temps les plus précis au monde. Elles permettent de définir la seconde avec une précision extrême et jouent un rôle clé dans des technologies comme le GPS et les communications. Mais comment fonctionnent-elles exactement ? La base du temps : les atomes Contrairement aux horloges classiques qui utilisent des ressorts ou des pendules, les horloges atomiques mesurent le temps grâce aux propriétés des atomes. Plus précisément, elles exploitent la fréquence des oscillations des électrons lorsqu’ils changent d’énergie à l’intérieur d’un atome. L’atome le plus couramment utilisé est le césium-133. Lorsqu’il est soumis à des ondes électromagnétiques, ses électrons peuvent passer d’un état d’énergie à un autre en oscillant à une fréquence extrêmement stable : environ 9 192 631 770 oscillations par seconde. Cette fréquence est utilisée pour définir la seconde. Un processus précis de mesure 1. Vapeur d’atomes de césium On commence par chauffer un échantillon de césium pour en extraire des atomes sous forme de vapeur. 2. Sélection et excitation Les atomes passent ensuite dans un champ magnétique qui sélectionne uniquement ceux dans le bon état d’énergie. Ils sont ensuite exposés à des ondes micro-ondes à une fréquence proche de 9,19 GHz. 3. Résonance parfaite Si la fréquence des micro-ondes est parfaitement ajustée, un maximum d’atomes change d’état d’énergie. 4. Détection et ajustement Un détecteur mesure combien d’atomes ont changé d’état. Si le nombre est maximal, cela signifie que la fréquence des micro-ondes est correcte. Sinon, elle est ajustée pour atteindre la valeur exacte. Une précision inégalée Grâce à ce processus, les horloges atomiques modernes peuvent atteindre une précision telle qu’elles ne retarderaient que d’une seconde tous les 30 millions d’années ! Les modèles les plus avancés, utilisant des atomes de strontium ou d’ytterbium, sont encore plus précis. Applications des horloges atomiques Elles sont essentielles pour : - Le GPS : les satellites utilisent des horloges atomiques pour synchroniser les signaux et permettre une localisation ultra-précise. - Les télécommunications : elles garantissent la synchronisation des réseaux. - La physique : elles aident à tester des théories fondamentales comme la relativité d’Einstein. En résumé, une horloge atomique utilise les vibrations ultra-régulières des atomes pour mesurer le temps avec une précision inégalée, révolutionnant ainsi notre manière de compter les secondes ! Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
En décembre 2024, la NASA a découvert un astéroïde nommé 2024 YR4, mesurant entre 40 et 100 mètres de diamètre. Les analyses initiales indiquent une probabilité d'impact avec la Terre le 22 décembre 2032, estimée à environ 1,2 %, soit une chance sur 83. Cette probabilité, bien que faible, a conduit les agences spatiales internationales à classer 2024 YR4 au niveau 3 sur l'échelle de Turin, qui évalue le risque d'impact des objets célestes. Ce niveau suggère une attention particulière de la part des astronomes en raison d'une possibilité d'impact capable de causer des destructions localisées. Si un tel astéroïde venait à percuter la Terre, les conséquences seraient significatives mais non cataclysmiques. Un impact libérerait une énergie estimée à environ 8 mégatonnes de TNT, soit plus de 500 fois la puissance de la bombe atomique d'Hiroshima. Cela pourrait dévaster une grande ville et ses environs. Cependant, il est important de noter que ces estimations sont basées sur des observations initiales. À mesure que de nouvelles données seront collectées, notamment lors du prochain passage rapproché de l'astéroïde en 2028, les scientifiques pourront affiner la trajectoire prévue de 2024 YR4. Historiquement, de nombreux astéroïdes initialement considérés comme menaçants ont vu leur risque d'impact réévalué à la baisse après des observations supplémentaires. Les agences spatiales, dont la NASA et l'Agence spatiale européenne (ESA), surveillent activement cet astéroïde. Des groupes internationaux, tels que le Réseau international d'alerte aux astéroïdes (IAWN) et le Groupe consultatif de planification des missions spatiales (SMPAG), ont été activés pour coordonner les observations et envisager des mesures potentielles de défense planétaire, comme la déviation de l'astéroïde. En conclusion, bien que la découverte de 2024 YR4 et sa trajectoire actuelle justifient une surveillance continue, il n'y a pas lieu de paniquer. Les probabilités d'un impact en 2032 restent faibles, et les efforts internationaux sont en place pour affiner les prévisions et, si nécessaire, mettre en œuvre des mesures de protection de notre planète. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
Chaque jour, notre planète est bombardée par des milliers de météorites. Heureusement, la plupart sont de petites tailles et brûlent en entrant dans l’atmosphère. Mais celles qui survivent à cette descente infernale finissent par s’écraser quelque part sur Terre. Où exactement tombent-elles ? Y a-t-il des endroits privilégiés ? Une majorité finit dans les océans La Terre est recouverte à 71 % d’eau, principalement par les océans. Logiquement, la plupart des météorites terminent donc leur course dans les mers et disparaissent sans laisser de trace. Lorsqu’une météorite s’écrase dans l’eau, l’impact est généralement absorbé et reste invisible, sauf pour les plus grosses qui peuvent provoquer des ondes de choc sous-marines. Les zones désertiques, des terrains de prédilection pour la découverte Bien que les météorites tombent aléatoirement, certaines zones sont particulièrement propices à leur découverte. Les vastes étendues désertiques, comme le Sahara ou l’Antarctique, sont de véritables terrains de chasse pour les scientifiques. Dans ces environnements arides et peu perturbés par l’érosion, les météorites restent visibles pendant des milliers d’années. En Antarctique, les fragments sombres tranchent nettement avec la blancheur de la glace, facilitant leur repérage. Pourquoi trouve-t-on peu de météorites dans les forêts et les zones habitées ? Les zones boisées et humides, comme les jungles ou les forêts, sont peu favorables à la préservation des météorites. Les roches extraterrestres y sont rapidement recouvertes de végétation, rongées par l’humidité ou dispersées par l’érosion. De plus, les météorites se fragmentent souvent en touchant le sol, rendant leur identification encore plus difficile. Dans les zones urbaines, la probabilité qu’une météorite cause des dégâts est très faible. Avec des villes couvrant moins de 1 % de la surface terrestre, la probabilité qu’un impact survienne en plein milieu d’une agglomération est minime. Pourtant, quelques cas célèbres existent, comme celui de la météorite de Tcheliabinsk en 2013, qui a explosé en Russie en provoquant des milliers de vitres brisées. En résumé Les météorites peuvent tomber partout sur Terre, mais la majorité finit dans les océans. Les déserts et l’Antarctique sont les endroits où on les retrouve le plus facilement. Même si elles traversent parfois les cieux des villes, le risque qu’une météorite frappe un bâtiment ou un humain reste extrêmement faible. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
Vous êtes-vous déjà demandé pourquoi vous vous souvenez plus souvent de vos cauchemars que de vos rêves agréables ? Ce phénomène a une explication scientifique, liée à la biologie du sommeil, à la mémoire et même à l’évolution. Le rôle du sommeil paradoxal Nos rêves les plus intenses, qu’ils soient positifs ou négatifs, se produisent principalement pendant le sommeil paradoxal, une phase où l’activité cérébrale est proche de l’éveil. Les cauchemars, eux, surviennent souvent en fin de nuit, lorsque cette phase est plus longue. Comme nous nous réveillons plus fréquemment après un cauchemar, il est plus facile de s’en souvenir. En revanche, un rêve agréable peut s’effacer rapidement si nous replongeons dans un sommeil profond. Une question d’émotions et de mémoire Les émotions jouent un rôle crucial dans la mémoire. Le cerveau est conçu pour mieux enregistrer les événements marquants, notamment ceux liés à la peur ou au stress. C’est un héritage évolutif : nos ancêtres devaient retenir les expériences dangereuses pour éviter de répéter des erreurs fatales. Un cauchemar, qui active des émotions intenses comme l’anxiété ou la panique, a donc plus de chances de rester gravé dans notre mémoire. Un mécanisme d’adaptation évolutif Certains chercheurs pensent que les cauchemars servent de « simulation » pour nous préparer à affronter des situations menaçantes. Ce serait une sorte d’entraînement mental, permettant d’anticiper les dangers et d’améliorer nos réactions face à eux. Ce biais expliquerait pourquoi notre cerveau accorde plus d’importance aux scénarios négatifs qu’aux rêves paisibles. Un phénomène amplifié par le stress Le stress et l’anxiété favorisent les cauchemars. Une journée éprouvante ou des préoccupations importantes peuvent influencer notre activité cérébrale nocturne et générer des rêves plus angoissants. À l’inverse, un état d’esprit détendu favorise les rêves agréables, mais comme ils suscitent moins d’émotions intenses, ils s’effacent plus rapidement. En résumé Si nous avons l’impression que les cauchemars reviennent plus souvent que les rêves positifs, c’est parce qu’ils nous marquent davantage. Leur intensité émotionnelle, leur survenue en fin de nuit et leur rôle évolutif font qu’ils restent plus facilement en mémoire. Finalement, notre cerveau met en avant ces expériences pour mieux nous protéger… même si cela signifie parfois des nuits agitées ! Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
Les ours polaires évoluent dans des conditions extrêmes où la glace et le froid pourraient être de sérieux handicaps. Pourtant, leur fourrure reste étonnamment sèche et exempte de givre. Comment est-ce possible ? La réponse réside dans un secret bien gardé : un sébum aux propriétés extraordinaires. Une fourrure conçue pour l’extrême Les ours polaires possèdent un pelage unique. Contrairement aux idées reçues, leurs poils ne sont pas blancs, mais translucides et creux. Cette structure piège l’air et améliore l’isolation thermique. Mais ce n’est pas tout : leur peau est noire, ce qui permet d’absorber et de conserver la chaleur solaire. Le rôle clé du sébum Ce qui fait vraiment la différence, c’est une substance sécrétée par la peau de l’ours polaire : le sébum. Ce mélange lipidique, produit par des glandes sébacées, enduit chaque poil d’une couche protectrice. Son rôle principal est d’imperméabiliser la fourrure, empêchant ainsi l’eau de pénétrer jusqu’à la peau et d’accélérer la congélation des poils. Mais ce sébum a une autre propriété fascinante : il est particulièrement huileux et hydrophobe. Cela signifie que lorsqu’un ours polaire est exposé à l’humidité, l’eau ne s’accroche pas aux poils, mais perle et s’écoule immédiatement. La glace, quant à elle, peine à adhérer à une surface aussi grasse et glissante. Une adaptation évolutive parfaite Grâce à cette caractéristique, les ours polaires évitent une accumulation de glace sur leur fourrure, qui pourrait non seulement peser lourd, mais aussi diminuer leur isolation et gêner leurs mouvements. Ce mécanisme leur permet de rester secs, même après une immersion dans l’eau glacée de l’Arctique. En somme, si la glace ne colle pas à leur pelage, c’est parce que la nature leur a offert une solution ingénieuse : un sébum aux propriétés hydrofuges exceptionnelles. Cette adaptation est l’un des nombreux secrets qui permettent aux ours polaires de survivre dans l’un des environnements les plus hostiles de la planète. Une preuve supplémentaire que l’évolution façonne des solutions incroyablement efficaces ! Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
L'énergie noire, également appelée énergie sombre, est une composante hypothétique de l'univers introduite pour expliquer l'accélération observée de son expansion. Elle représenterait environ 70 % du contenu énergétique de l'univers, le reste étant constitué de matière noire et de matière ordinaire. Cependant, sa nature exacte demeure l'une des plus grandes énigmes de la cosmologie moderne. Observations soutenant l'existence de l'énergie noire En 1998, des observations de supernovae de type Ia ont révélé que l'univers est en expansion accélérée. Ces supernovae, utilisées comme chandelles standard en raison de leur luminosité prévisible, apparaissaient moins lumineuses que prévu, suggérant qu'elles étaient plus éloignées qu'estimé. Pour expliquer cette accélération, les cosmologistes ont proposé l'existence d'une forme d'énergie exerçant une pression négative, d'où le concept d'énergie noire. Modèles théoriques et constantes cosmologiques L'une des explications proposées est l'ajout d'une constante cosmologique aux équations de la relativité générale d'Einstein. Cette constante représenterait une densité d'énergie du vide spatial, responsable de l'accélération de l'expansion cosmique. Cependant, la valeur observée de cette constante diffère de plusieurs ordres de grandeur des prédictions théoriques, posant un défi majeur aux physiciens. Défis et controverses récents Malgré son acceptation généralisée, l'existence de l'énergie noire est remise en question. Une étude récente menée par des chercheurs néo-zélandais propose une alternative sans recourir à l'énergie noire. Selon leur modèle, appelé "paysage temporel", l'accélération apparente de l'expansion de l'univers pourrait être due à des variations locales du taux d'écoulement du temps, influencées par la distribution inégale de la matière dans l'univers. Cette approche suggère que les différences de gravité entre les régions denses, comme les galaxies, et les vides cosmiques pourraient créer l'illusion d'une accélération globale. Observations et missions en cours Pour approfondir la compréhension de l'énergie noire, des missions spatiales telles qu'Euclid de l'Agence spatiale européenne ont été lancées. Euclid vise à cartographier la distribution des galaxies et à étudier la géométrie de l'univers pour fournir des indices sur la nature de l'énergie noire. Les premières images de cette mission ont été publiées récemment, offrant un aperçu prometteur des données à venir. Conclusion L'existence de l'énergie noire reste un sujet de débat au sein de la communauté scientifique. Bien que les observations actuelles suggèrent une accélération de l'expansion de l'univers, les explications varient, et la nature exacte de cette force demeure incertaine. Les recherches en cours, tant théoriques qu'observationnelles, sont essentielles pour élucider ce mystère cosmique. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
Le 22 janvier 2025, des scientifiques chinois ont réalisé une avancée majeure dans le domaine de la fusion nucléaire en maintenant un plasma à une température de 108 millions de degrés Celsius pendant 1 066 secondes, soit près de 18 minutes. Cette performance a été accomplie grâce au Tokamak Supraconducteur Avancé Expérimental (EAST), surnommé le "soleil artificiel" de la Chine. Compréhension de la fusion nucléaire et du tokamak La fusion nucléaire est le processus par lequel des noyaux atomiques légers, tels que l'hydrogène, se combinent pour former des noyaux plus lourds, libérant une quantité considérable d'énergie. C'est le mécanisme qui alimente le Soleil et les autres étoiles. Reproduire ce processus sur Terre pourrait fournir une source d'énergie propre, sûre et quasi illimitée. Un tokamak est un dispositif conçu pour confiner un plasma chaud à l'aide de champs magnétiques puissants, créant ainsi les conditions nécessaires à la fusion nucléaire. Le plasma, un état de la matière où les électrons sont séparés des noyaux atomiques, doit atteindre des températures extrêmement élevées pour que la fusion se produise. Le rôle d'EAST dans la recherche sur la fusion EAST, situé à Hefei, est un tokamak de pointe développé par l'Académie chinoise des sciences. Son objectif est de reproduire les réactions de fusion qui se produisent au cœur du Soleil, en chauffant des isotopes d'hydrogène à des températures ultra-élevées pour former un plasma. L'un des principaux défis est de maintenir ce plasma stable pendant une période prolongée, une condition essentielle pour la production continue d'énergie. Les implications de ce record La réussite d'EAST, en maintenant un plasma à 108 millions de degrés Celsius pendant près de 18 minutes, représente un pas significatif vers la réalisation de la fusion nucléaire contrôlée. Cette durée est presque trois fois supérieure au précédent record de 403 secondes établi en 2023. Cette avancée démontre la capacité des chercheurs à contrôler et à stabiliser le plasma sur des périodes prolongées, rapprochant ainsi la possibilité de centrales à fusion capables de fournir une énergie propre et inépuisable. Les défis restants Malgré ce succès, plusieurs obstacles subsistent avant que la fusion nucléaire ne devienne une source d'énergie commercialement viable. Il est nécessaire de développer des matériaux capables de résister aux conditions extrêmes à l'intérieur du tokamak, notamment des températures élevées et des flux de particules intenses. De plus, les scientifiques doivent améliorer l'efficacité énergétique globale du processus, en veillant à ce que l'énergie produite par la fusion dépasse largement l'énergie nécessaire pour chauffer et confiner le plasma. Perspectives futures Les chercheurs chinois prévoient de poursuivre leurs travaux en collaboration avec la communauté internationale, dans le but de surmonter ces défis et de rendre l'énergie de fusion une réalité pratique. Le succès d'EAST constitue une étape importante vers le développement de réacteurs à fusion opérationnels, offrant l'espoir d'une source d'énergie durable pour l'avenir. En conclusion, le record établi par le "soleil artificiel" de la Chine marque une avancée significative dans la quête de la fusion nucléaire contrôlée, rapprochant l'humanité de la réalisation d'une source d'énergie propre et pratiquement illimitée. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
Le gouvernement de l'État du Tamil Nadu, situé au sud-est de l'Inde, a récemment annoncé une récompense d'un million de dollars pour quiconque parviendra à déchiffrer l'écriture de la civilisation de la vallée de l'Indus. Cette initiative vise à élucider l'un des plus grands mystères archéologiques et linguistiques de l'histoire. La civilisation de l'Indus et son écriture La civilisation de l'Indus, également connue sous le nom de civilisation harappéenne, a prospéré entre 3300 et 1300 av. J.-C. dans les régions qui correspondent aujourd'hui au Pakistan et au nord-ouest de l'Inde. Elle est réputée pour ses villes planifiées, son système d'assainissement avancé et son artisanat sophistiqué. Malgré ces avancées, l'écriture de l'Indus demeure indéchiffrée, entravant notre compréhension de leur langue, de leur culture et de leur organisation sociale. L'initiative du Tamil Nadu Le ministre en chef du Tamil Nadu, M.K. Stalin, a annoncé cette récompense en déclarant : « J'annonce une récompense en espèces de 1 million de dollars aux individus ou organisations qui déchiffreront l'écriture à la satisfaction des experts archéologiques. » Cette annonce fait suite à une publication scientifique récente qui suggère une possible connexion entre les marques trouvées sur des poteries anciennes tamoules et l'écriture harappéenne, indiquant une relation potentielle entre ces deux cultures anciennes. Les défis du déchiffrement À ce jour, environ 4 000 artefacts inscrits ont été découverts, comportant environ 68 symboles distincts. La majorité de ces inscriptions sont courtes, généralement entre 5 et 6 caractères, la plus longue en comportant 34. Cette brièveté complique l'analyse, rendant difficile la détermination de la nature de l'écriture : logographique, syllabique ou alphabétique. De nombreuses tentatives de déchiffrement ont été entreprises, mais aucune n'a abouti à un consensus parmi les chercheurs. L'importance du déchiffrement Déchiffrer cette écriture pourrait révolutionner notre compréhension de la civilisation de l'Indus, révélant des aspects inconnus de leur langue, de leur administration, de leurs croyances religieuses et de leurs interactions avec d'autres cultures contemporaines. Cela permettrait également de combler des lacunes significatives dans l'histoire ancienne de l'Inde et de l'humanité en général. Appel aux chercheurs et aux technologues Cette initiative a suscité l'intérêt de nombreux chercheurs, linguistes et experts en intelligence artificielle. Certains estiment que les technologies modernes, telles que l'apprentissage automatique et l'analyse de données massives, pourraient offrir de nouvelles perspectives pour résoudre ce mystère ancien. Cependant, les experts restent prudents quant à la capacité des seules machines à accomplir cette tâche complexe, soulignant l'importance d'une approche interdisciplinaire combinant expertise humaine et outils technologiques. En conclusion, la récompense offerte par le gouvernement du Tamil Nadu représente une opportunité unique pour la communauté internationale de collaborer à la résolution d'un des plus grands mystères de l'histoire humaine. Le déchiffrement de l'écriture de la civilisation de l'Indus pourrait ouvrir une nouvelle ère de découvertes sur nos ancêtres et leur mode de vie. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
Les lunes ne possèdent généralement pas d'anneaux comme les planètes en raison de plusieurs facteurs physiques et dynamiques liés à leur taille, à leur gravité et à leur environnement orbital. Voici les principales raisons : 1. Gravité insuffisante Les planètes géantes, comme Saturne ou Jupiter, ont une forte gravité qui leur permet de capturer et de maintenir des débris en orbite sous forme d'anneaux. En revanche, les lunes, étant beaucoup plus petites, ne disposent pas d'une gravité suffisante pour retenir durablement un système d'anneaux stable. Les particules tendraient à retomber sur la surface de la lune ou à être éjectées dans l'espace interplanétaire. 2. Forces de marée des planètes principales Les lunes sont généralement en orbite autour d'une planète plus massive, et les forces gravitationnelles de cette planète perturbent l'équilibre des particules qui pourraient former des anneaux autour de la lune. Ces forces de marée tendent à disperser les débris au lieu de leur permettre de s'agréger et de former un système stable autour de la lune. 3. Collision avec des débris planétaires Les lunes orbitent souvent à proximité d'autres satellites et de ceintures de débris en formation autour de la planète hôte. Les interactions gravitationnelles et les impacts de micrométéorites peuvent empêcher la formation et le maintien d'anneaux autour des lunes. 4. Espace limité dans la sphère de Hill La sphère de Hill représente la région où une lune peut gravitationnellement retenir des objets en orbite autour d'elle-même. Pour une lune, cette région est relativement petite par rapport à celle d'une planète, ce qui rend difficile la formation et la stabilité d'un anneau autour d'elle. 5. Durée de vie des anneaux Si des anneaux venaient à se former autour d'une lune, ils seraient de courte durée en raison des forces de marée de la planète hôte, des perturbations gravitationnelles et de l'action des forces non gravitationnelles comme la pression de radiation solaire et les effets électrostatiques dus au vent solaire. 6. Exemples exceptionnels Bien que rares, certaines lunes pourraient avoir des structures temporaires similaires à des anneaux. Par exemple, la lune de Saturne Rhéa a été soupçonnée d'avoir un disque de matière autour d'elle, mais cela n'a pas été confirmé de manière définitive. En conclusion, la combinaison de la faible gravité des lunes, des perturbations gravitationnelles exercées par leur planète hôte et des dynamiques orbitales instables empêche généralement la formation d'anneaux autour des lunes, contrairement aux planètes géantes qui bénéficient d'un environnement plus favorable pour leur maintien. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
La valeur nutritive de la chair humaine a été étudiée par l'anthropologue James Cole de l'Université de Brighton, dont les travaux ont été publiés en 2017 dans la revue Scientific Reports. Cette recherche visait à comprendre les motivations potentielles du cannibalisme chez les populations préhistoriques en évaluant l'apport calorique qu'un corps humain pouvait fournir. Composition calorique détaillée : Selon les estimations de Cole, un corps humain adulte moyen d'environ 65 kg offrirait un total approximatif de 125 822 calories. Cette énergie est répartie entre les différents tissus et organes du corps de la manière suivante : - Muscles (environ 28 kg) : environ 32 376 calories, soit environ 1 150 calories par kilogramme de muscle. - Graisse (environ 10,5 kg) : environ 49 940 calories, soit environ 4 756 calories par kilogramme de graisse. - Peau (environ 3,5 kg) : environ 10 280 calories, soit environ 2 937 calories par kilogramme de peau. - Foie (environ 1,05 kg) : environ 2 569 calories, soit environ 2 447 calories par kilogramme de foie. - Cerveau (environ 1,4 kg) : environ 2 706 calories, soit environ 1 933 calories par kilogramme de cerveau. - Poumons (environ 1,3 kg) : environ 1 956 calories, soit environ 1 505 calories par kilogramme de poumons. - Cœur (environ 0,3 kg) : environ 651 calories, soit environ 2 170 calories par kilogramme de cœur. - Reins (environ 0,3 kg) : environ 376 calories, soit environ 1 253 calories par kilogramme de reins. - Sang (environ 5,5 kg) : environ 2 706 calories, soit environ 492 calories par kilogramme de sang. Ces chiffres indiquent que les muscles et la graisse constituent les principales sources caloriques du corps humain, représentant ensemble plus de 80 % de l'apport énergétique total. Comparaison avec d'autres espèces : Pour mettre ces données en perspective, Cole a comparé la valeur calorique de la chair humaine à celle d'autres animaux chassés par les populations préhistoriques : - Sanglier : environ 1 800 calories pour 500 g de muscle. - Castor : environ 1 800 calories pour 500 g de muscle. - Humain : environ 650 calories pour 500 g de muscle. Ainsi, la viande humaine est moins calorique que celle de nombreux animaux, ce qui suggère que le cannibalisme chez les populations préhistoriques n'était probablement pas motivé principalement par des besoins nutritionnels. D'autres facteurs, tels que des pratiques culturelles, rituelles ou des situations de survie extrême, pourraient expliquer cette pratique. En conclusion, bien que le corps humain puisse fournir une quantité notable de calories, sa valeur nutritive est inférieure à celle de nombreuses proies animales disponibles pour les chasseurs-cueilleurs préhistoriques. Cela suggère que le cannibalisme avait probablement des motivations complexes dépassant le simple apport énergétique. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
Sorti en 1997 et réalisé par Andrew Niccol, "Bienvenue à Gattaca" (Gattaca en version originale) est considéré par la NASA comme le film de science-fiction le plus réaliste de tous les temps. Cette distinction repose sur la plausibilité scientifique du scénario, qui aborde un futur où le génie génétique joue un rôle central dans la société humaine. Contrairement à d'autres films de science-fiction centrés sur des technologies lointaines ou futuristes, "Bienvenue à Gattaca" explore des avancées qui pourraient devenir réalité dans un avenir proche. L'intrigue du film se déroule dans un monde où les enfants sont conçus en laboratoire, permettant aux parents de choisir les caractéristiques génétiques idéales pour garantir la santé, l'intelligence et les aptitudes physiques optimales. Ceux qui naissent de manière naturelle, sans intervention génétique, sont désavantagés et subissent une discrimination institutionnalisée. Le personnage principal, Vincent Freeman, est un "invalide", c'est-à-dire un individu né sans sélection génétique, qui rêve d'intégrer Gattaca, une prestigieuse institution spatiale. Pour contourner les barrières génétiques, il usurpe l'identité d'un individu génétiquement "supérieur", soulevant ainsi des questions éthiques fondamentales sur le déterminisme génétique et le libre arbitre. Ce que la NASA a particulièrement apprécié dans "Bienvenue à Gattaca", c'est son approche réaliste des avancées en biotechnologie et en eugénisme. Avec les progrès actuels dans la manipulation du génome humain, comme la technologie CRISPR-Cas9, il est désormais envisageable de modifier l'ADN pour prévenir certaines maladies héréditaires et optimiser les caractéristiques humaines. Le film soulève des préoccupations sur l'émergence potentielle d'une société divisée entre "génétiquement privilégiés" et "naturels", ce qui résonne fortement avec les débats bioéthiques actuels. En plus de son réalisme scientifique, le film se distingue par son atmosphère épurée et son style rétro-futuriste, mettant en avant une vision dystopique où les progrès scientifiques conduisent à de nouvelles formes de discrimination. L'absence de technologies extravagantes renforce l'impression que ce futur est à portée de main, rendant le récit d'autant plus crédible. En conclusion, "Bienvenue à Gattaca" offre une réflexion percutante sur les dérives possibles du génie génétique, en s'appuyant sur des fondements scientifiques solides. Sa reconnaissance par la NASA témoigne de la pertinence de ses questionnements et de sa capacité à anticiper les défis éthiques et sociaux liés aux avancées biotechnologiques modernes. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
La périhélie est le point de l'orbite d'un objet céleste, comme une planète, une comète ou un astéroïde, où il se trouve au plus proche du Soleil. Le terme vient du grec peri- (autour, proche) et helios (Soleil). À l'opposé, le point le plus éloigné du Soleil est appelé aphélie. La périhélie dans le contexte du mouvement planétaire Les planètes du Système solaire, y compris la Terre, suivent des orbites elliptiques selon les lois de Kepler, et non circulaires parfaites. Cela signifie qu'elles ont deux points caractéristiques sur leur orbite : - La périhélie, où la planète est la plus proche du Soleil. - L'aphélie, où la planète est la plus éloignée du Soleil. La Terre atteint sa périhélie autour du 3 au 5 janvier chaque année, à une distance d'environ 147 millions de kilomètres du Soleil. À l'aphélie, en juillet, la Terre est à environ 152 millions de kilomètres. Effets de la périhélie Bien que la Terre soit plus proche du Soleil en janvier, cela ne signifie pas nécessairement qu'il fait plus chaud sur notre planète. En effet, les saisons terrestres sont principalement influencées par l'inclinaison de l'axe de rotation de la Terre (environ 23,5°), et non par la distance au Soleil. C’est pourquoi l’hémisphère nord connaît l’hiver en janvier, malgré la proximité accrue du Soleil. Cependant, la périhélie influence légèrement la vitesse orbitale de la Terre. Selon la deuxième loi de Kepler, une planète se déplace plus rapidement lorsqu'elle est proche du Soleil et plus lentement lorsqu'elle est éloignée. Ainsi, en janvier, la Terre se déplace légèrement plus vite dans son orbite qu'en juillet. La périhélie pour d'autres objets célestes D'autres corps du Système solaire, comme les comètes, ont des orbites hautement elliptiques, ce qui signifie qu'elles subissent des variations extrêmes entre leur périhélie et leur aphélie. Par exemple, la comète de Halley, qui suit une orbite très allongée, atteint sa périhélie environ tous les 76 ans, lorsqu'elle est visible depuis la Terre. Conclusion La périhélie est donc un concept clé en astronomie pour comprendre le mouvement orbital des objets autour du Soleil. Elle a des implications sur la vitesse orbitale, les températures saisonnières (dans une moindre mesure) et la dynamique des objets célestes comme les planètes et les comètes. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
Oui, plusieurs espèces animales semblent manifester des comportements assimilables au deuil lorsqu'elles perdent un proche. Bien que le concept du deuil tel que nous l'entendons chez les humains soit difficile à prouver scientifiquement chez les animaux, de nombreuses observations indiquent des réactions émotionnelles face à la perte d'un congénère. Voici quelques exemples d'animaux qui montrent des signes de deuil : 1. Les éléphants Les éléphants sont souvent cités comme l'exemple le plus frappant de comportements liés au deuil. Ils peuvent rester près du corps d’un membre décédé pendant des heures, voire des jours, le toucher doucement avec leur trompe, le recouvrir de branches ou de terre et émettre des vocalisations particulières. Des études montrent qu’ils reconnaissent même les ossements d’anciens compagnons longtemps après leur mort. 2. Les dauphins et les orques Ces cétacés présentent également des comportements de deuil marqués. Il n’est pas rare d’observer des dauphins portant le corps de leur petit décédé sur leur dos pendant des jours, ou de voir des membres d'un groupe rester autour d’un individu mort, comme s’ils tentaient de le réanimer ou de comprendre sa disparition. 3. Les chimpanzés et autres primates Les chimpanzés, très proches de l’humain sur le plan évolutif, montrent des comportements de deuil remarquables. Ils peuvent rester aux côtés du corps d’un proche, le toucher, le toiletter et exprimer des signes de détresse émotionnelle tels que la perte d’appétit ou l’isolement temporaire. Certaines mères chimpanzés transportent le corps de leur petit décédé pendant des jours, voire des semaines. 4. Les corvidés (corbeaux, pies, geais) Les corvidés, connus pour leur intelligence, organisent parfois ce qui ressemble à des « funérailles ». Lorsqu’un congénère meurt, ils se rassemblent autour du corps, le scrutent et poussent des cris spécifiques. Certains scientifiques estiment qu’il s’agit d’une forme d’apprentissage du danger, mais d’autres pensent qu'il pourrait s'agir d'un processus émotionnel plus complexe. 5. Les girafes Des observations ont montré que les girafes restent parfois auprès du cadavre d'un de leurs petits pendant plusieurs heures, le léchant ou le reniflant à plusieurs reprises, témoignant potentiellement d'une forme de chagrin. 6. Les loups Dans les meutes de loups, la perte d’un membre entraîne des changements de comportement notables. Les loups peuvent chercher leur compagnon disparu, hurler de manière inhabituelle, et certains montrent des signes de repli social, indiquant qu'ils ressentent une perte émotionnelle. Interprétation scientifique Les comportements observés chez ces animaux sont souvent interprétés comme des expressions d'attachement fort plutôt qu'un véritable deuil conscient. Néanmoins, ces observations suggèrent que la perte d'un proche a un impact émotionnel et comportemental profond dans de nombreuses espèces sociales. Ainsi, bien que nous ne puissions pas affirmer avec certitude que ces animaux « pleurent » à la manière des humains, ils montrent des signes indéniables de détresse et d'attachement face à la perte de leurs proches. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
La mer d’Aral, autrefois l’un des plus grands lacs du monde, est aujourd’hui l’un des plus grands désastres écologiques causés par l’homme. Située en Asie centrale, à cheval entre le Kazakhstan et l’Ouzbékistan, cette mer intérieure a commencé à se réduire drastiquement à partir des années 1960, en grande partie à cause des décisions prises par l’Union soviétique. Mais pourquoi l’URSS a-t-elle asséché la mer d’Aral ? Tout remonte aux années 1950, lorsque les dirigeants soviétiques ont lancé un ambitieux programme de développement agricole. L’objectif était de transformer l’Asie centrale en un immense grenier à coton, surnommé "l’or blanc", pour répondre aux besoins croissants de l’économie soviétique. Pour irriguer ces vastes plantations de coton, l’URSS a détourné les deux principaux fleuves qui alimentaient la mer d’Aral : l’Amou-Daria et le Syr-Daria. Des milliers de kilomètres de canaux d’irrigation ont été construits, souvent de manière peu efficace, avec d’importantes pertes d’eau par infiltration et évaporation. À court terme, cette politique a permis une augmentation massive de la production agricole, rendant l’Union soviétique autosuffisante en coton et renforçant son économie. Cependant, les conséquences écologiques n’ont pas tardé à apparaître. Privée d’une grande partie de son alimentation en eau douce, la mer d’Aral a commencé à se rétrécir rapidement, perdant environ 90 % de sa superficie en quelques décennies. Les répercussions de cet assèchement ont été catastrophiques. La salinité de l’eau a fortement augmenté, rendant impossible la survie de nombreuses espèces aquatiques. Les ports autrefois prospères sont aujourd’hui des cimetières de bateaux échoués dans le désert. Le climat local s’est également détérioré, avec des hivers plus froids et des étés plus chauds, accentuant les difficultés agricoles. De plus, les sédiments exposés, chargés de pesticides et de produits chimiques utilisés autrefois pour l’agriculture intensive, ont été soulevés par le vent, provoquant des problèmes de santé majeurs parmi les populations locales, comme des maladies respiratoires et des cancers. Aujourd’hui, des efforts sont entrepris pour restaurer partiellement la mer d’Aral, notamment par le Kazakhstan, qui a construit un barrage pour préserver sa partie nord. Toutefois, la majeure partie de l’ancien bassin est irrémédiablement perdue, laissant derrière lui une leçon amère sur les conséquences d’une gestion non durable des ressources naturelles. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
Imaginez un avion recouvert d’une peau inspirée directement de celle du requin. C’est exactement ce que teste actuellement la compagnie Japan Airlines, en collaboration avec des chercheurs et des ingénieurs aéronautiques. Mais pourquoi s'intéresser à un tel revêtement inspiré du monde animal ? La réponse tient en un mot : l’aérodynamisme. La peau des requins est recouverte de minuscules structures en forme d’écailles appelées denticules dermiques. Ces denticules permettent de réduire la traînée hydrodynamique lorsque le requin nage, lui permettant d’évoluer rapidement et efficacement dans l’eau. Les ingénieurs ont donc eu l’idée de transposer ce concept au monde de l’aviation, où la réduction de la traînée est un enjeu majeur. En appliquant une peinture spéciale qui imite la texture des denticules sur la surface des avions, Japan Airlines espère réduire la résistance de l’air. Une traînée moindre signifie une consommation de carburant réduite, donc des économies substantielles pour les compagnies aériennes, tout en diminuant leur empreinte carbone. On estime que cette technologie pourrait permettre de réduire la consommation de carburant de 1 à 2 %, ce qui représente des millions de litres d’économies sur une flotte entière et des tonnes de CO2 en moins rejetées dans l’atmosphère. L’expérimentation menée par Japan Airlines s’inscrit dans une volonté plus large de rendre l’aviation plus respectueuse de l’environnement. Face aux préoccupations croissantes liées aux émissions de gaz à effet de serre et aux pressions réglementaires pour une aviation plus verte, les compagnies recherchent activement des solutions innovantes. D’ailleurs, cette technologie bio-inspirée ne se limite pas à l’aéronautique. Elle est aussi testée dans le domaine maritime, sur la coque des navires, pour limiter les frottements avec l’eau et réduire leur consommation de carburant. Si les résultats des tests sont concluants, on pourrait voir, dans un futur proche, la généralisation de ce type de revêtement dans l’industrie aérienne. Cela montre une fois de plus comment la nature, par des millions d'années d'évolution, peut inspirer les technologies les plus avancées pour répondre aux défis de notre époque. En somme, la peinture "peau de requin" est un exemple fascinant de biomimétisme, où la science et la nature s’unissent pour rendre nos déplacements plus efficaces et plus durables. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
Bienvenido a Player FM!
Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.