Artwork

Contenido proporcionado por Adventures in DevOps, Will Button, and Warren Parad. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Adventures in DevOps, Will Button, and Warren Parad o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Solving incidents with one-time ephemeral runbooks

49:59
 
Compartir
 

Manage episode 514600282 series 2529949
Contenido proporcionado por Adventures in DevOps, Will Button, and Warren Parad. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Adventures in DevOps, Will Button, and Warren Parad o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Share Episode ⸺ Episode Sponsor: Attribute - https://dev0ps.fyi/attribute
In the wake of one of the worst AWS incidents in history, we're joined by Lawrence Jones, Founding Engineer at Incident.io. The conversation focuses on the challenges of managing incidents in highly regulated environments like FinTech, where the penalties for downtime are harsh and require a high level of rigor and discipline in the response process. Lawrence details the company's evolution, from running a monolithic Go binary on Heroku to moving to a more secure, robust setup in GCP, prioritizing the use of native security primitives like GCP Secret Manager and Kubernetes to meet the obligations of their growing customer base.

We spotlight exactly how a system can crawl GitHub pull requests, Slack channels, telemetry data, and past incident post-mortems to dynamically generate an ephemeral runbook for the current incident.Also discussed are the technical challenges of using RAG (Retrieval-Augmented Generation), noting that they rely heavily on pre-processing data with tags and a service catalog rather than relying solely on less consistent vector embeddings to ensure fast, accurate search results during a crisis.

Finally, Lawrence stresses that frontier models are no longer the limiting factor in building these complex systems; rather, success hinges on building structured, modular systems, and doing the hard work of defining objective metrics for improvement.

💡 Notable Links:
🎯 Picks:
  continue reading

297 episodios

Artwork
iconCompartir
 
Manage episode 514600282 series 2529949
Contenido proporcionado por Adventures in DevOps, Will Button, and Warren Parad. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Adventures in DevOps, Will Button, and Warren Parad o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Share Episode ⸺ Episode Sponsor: Attribute - https://dev0ps.fyi/attribute
In the wake of one of the worst AWS incidents in history, we're joined by Lawrence Jones, Founding Engineer at Incident.io. The conversation focuses on the challenges of managing incidents in highly regulated environments like FinTech, where the penalties for downtime are harsh and require a high level of rigor and discipline in the response process. Lawrence details the company's evolution, from running a monolithic Go binary on Heroku to moving to a more secure, robust setup in GCP, prioritizing the use of native security primitives like GCP Secret Manager and Kubernetes to meet the obligations of their growing customer base.

We spotlight exactly how a system can crawl GitHub pull requests, Slack channels, telemetry data, and past incident post-mortems to dynamically generate an ephemeral runbook for the current incident.Also discussed are the technical challenges of using RAG (Retrieval-Augmented Generation), noting that they rely heavily on pre-processing data with tags and a service catalog rather than relying solely on less consistent vector embeddings to ensure fast, accurate search results during a crisis.

Finally, Lawrence stresses that frontier models are no longer the limiting factor in building these complex systems; rather, success hinges on building structured, modular systems, and doing the hard work of defining objective metrics for improvement.

💡 Notable Links:
🎯 Picks:
  continue reading

297 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir